TECHNISCHE
@ UNIVERSITAT
DRESDEN

Detecting Emergent Interference in Integration of
Multiple Self-Adaptive Systems

Somayeh Malakuti
Software Technology Group

Technical University of Dresden I
Germany)

26.08.2014 oxesomn

ccccccc
zzzzzzzzzzzz
ssssssssssss
............

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Outline

e Background
e Detecting Emergent Interference via Formal Verification
e Modeling execution environment
¢ Modeling self-adaptive systems
e Verification of self-adaptive systems
e Modeling and verifying SoS

e (Conclusion and Future Work

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Background

e Self-adaptive software systems (SAS’s) are characterized by their
ability to adapt according to changes in their environment.

e MAPE-K model is widely adopted to design and implement SAS’s as
a feedback control loop.

Analyze Plan
\
Monitor Execution
\/ Knowledge \/
Base
Sensor Actuator

Managed System

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Background

e Within the context of the HAEC (Highly Adaptive Energy-efficient
Computing) project, different research teams are investigating
various kinds of SAS at different layers:

e operating systems, database management systems, application software
and virtual machines.

e The common goal of these SAS's is to improve the energy-utility of
the system:

e The system must serve the requests of users in an energy efficient way
while fulfilling the desired utility objectives of the users.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

B a C kg ro u n d Transcode (file,

objective =Maximize(resolution))

r-—TT=—T==—== 1
»| Application-level SAS
VM (1) Lo e e e e !
Select
Implementation
Availability of !
Start, Stop, Resources 1
Migrate . q
8 Video Transcoding
App.
Start, Stop, VM (2)
Migrate yY
I VM-level SAS :4—
L e e e - — -
Server Load

CPU NIC RAM HDD

Hardware Components

Server

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Background

e Integrating multiple SAS's, which are developed and managed
independently, is a novel example of SoS.

o Is there any emergent interference as the result of such
integration, which may negatively influence the overall energy-
utility of the system?

e Emergent behavior is an effect that is caused from the interactions
of multiple constituent entities.
e The term “emergent” implies that it is very hard or even impossible to
reduce the behavior to the behavior of individual constituent entities.
e Various types and categories of emergent behavior are defined in
literature. Examples are:
e Expected and desirable emergent behavior
e Expected and undesirable emergent behavior
e Unexpected and desirable behavior
e Unexpected and undesirable emergent behavior

TECHNISCHE
UNIVERSITAT
DRESDEN
Detecting Emergent Interference via Formal Verification

e Due to the complexity of SAS’s, there is an inevitable need to
provide methodological and tool support to detect emergent
interference.

e There are various methods to detect emergent behavior:
e Variable-based
e Event-based

» These require a priori definition of emergent behavior

e Adopting formal modeling and model checking to detect emergent
behavior can be regarded as a combination of the variable-based
and event-based methods.

e The behavior of each constituent system is modeled as an event-based

automaton, and the states of each automaton is represented via a set of
variables.

e A specific global state of the system, which is automatically detected by a
model checker, is regarded as emergent behavior.

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 1: Modeling Execution Environment

FP— = === ——— 1
»| Application-level SAS
VM (1) Lo e e e e !
Select
Implementation
Availability of !
Start, Stop, Resources L
Migrate . q
8 Video Transcoding
App.
Start, Stop, VM (2)
Migrate Y
l VM-level SAS :4—
L e e e - — -
Server Load

CPU NIC RAM HDD

Hardware Components

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 1: Modeling Execution Environment (CPU)

CPU_frequency_changed[s_id]!

CPU_on[s_id]? CPU_frequency_changel[s_id]?

cpu_frequency = new_cpu_frequency
Changing

CPU_off[s_id]?
cpu_frequency =0

\

CPU onfs_id]? & oft

cpu_frequency = new_cpu_frequency

TECHNISCHE
UNIVERSITAT
DRESDEN

Step 1: Modeling Execution Environment (NIC)

BW_changed[s_id]!

NIC on[s_id]? BW _change[s_id]?

bw = new_bw .

Changing

NIC_ off[s_id]?
w =0

NIC_on[s_id]?

bw = new_bw

10

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 1: Modeling Execution Environment (Server)

turned_on[s_id]!

s — Turned_On
on=1
NIC_on[s_id]!
new_bw = getBandwidth(s_id)
CPU_on[s_id]!
turn_on[s_id]? new_cpu_frequency = getFrequency(s_id)
turn_on[s_id]? Turning_On
on==1
.& 7 turn_off[s_id]? “-Q CPU_off[s_id]! O NIC_off[s_id]! ‘
o on=1 N —
Turning_Off Turned_Off

turn_off[s_id]?

turned_off[s_id]!

on=0

11

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 2: Modeling Individual Self-adaptive Systems

1
»| Application-level SAS

VM (1) L e e e e e - |
Select l
Implementation
Availability of 1
Start, Stop, Resources :
Migrate

Video Transcoding

App.
1?tz.urt, Stop, VM (2)

CPU NIC RAM HDD

Hardware Components

Server

12

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 2: Modeling Individual Self-adaptive Systems

Start

r -O-

receive_request[current_server]?
request = getRequestinfo()

. request I= VALIDREQUEST

request == VALIDREQUEST
cur_cpu = getCurrentCPU(),
cur_bw = getCurrentBW(),
clk=0
Finding_Configuration
clk <= 20

config = getConfig(),
clk=0

config = -1

~ Applying_Configuration
clk <= 20

config == -1
req_cpu_frequency = 1,0 req_cpu_frequency = 2,
Gracefully_Degrade req_bw = 10 req_bw = 100

clk <=10

Configuration_Ready
clk=0

Serving_Request
request_served[current_server]! clk <= 30
13

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 2: Modeling Individual Self-adaptive Systems

l(load >0 && load <= MINLOAD)

)

Start

start? load = getLoad(current_server) .

Checking_Load
load > 0 && load <= MINLOAD

i
turned_off[tmp]? O
Finding_Server

new_server = getNewServer()

new_server I= current_server |

turn_off[tmp]!

G tmp = current_server,

End_Migrating current_server = new_server

Start_Migrating

new_server == current_server

14

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 3: Verifying Individual Self-adaptive Systems

e If there is a valid request from user, the request will eventually be served by
the application.

E<> (ApplicationLevelSAS.request == VALID_REQUEST
and ApplicationLevel SAS.Serving_Request)

e It will never be the case that while configuring the application with a new
implementation, the CPU frequency and network bandwidth goes below the
amount being used for selecting the implementation.

A[] not (ApplicationLevelSAS. Applying Configuration and
(CPU(current_server).cpu_frequency < cur_cpu
or NIC(current_server).bw < cur_bw))

e It will never be the case that while serving a request, the CPU frequency and
network bandwidth goes below the amount required for serving the request.

A[] not (ApplicationLevelSAS.Serving Request and
(CPU(current_server).cpu_frequency < req_cpu_frequency
or NIC(current_server).bw < req_bw))

15

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 3: Verifying Individual Self-adaptive Systems

e If a server is underutilized, and if a new server is found to migrate the VMs to,
the migration will take place.

E<> (load >=0 and load <= MINLOAD and
new_server ! = current_server and
(VMLevelSAS.Start_Migrating imply
VMLevelSAS.End_Migrating))

16

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 4: Detecting Emergent Interference
e Defining an SoS in UPPAAL.:

system
CPU, NIC, Server, ApplicationLevelSAS, VMLevelSAS, Run-
timeScenario;

e Detecting emergent interference:

AEpand (ARB®...) FEp

e If a property is violated, model checkers give a counter-example
trace. This trace can be adopted as a means to understand the
potential interference among constituent systems.

17

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Step 4: Detecting Emergent Interference

Emergent interference (1):

o If the VM-level SAS migrates a VM while application-level SAS is selecting
an implementation of the application, there may be a case that the
available resources in the new server is below the amount of resources
that the application-level SAS is considering for selecting the best
implementation.

Emergent interference (2):

o If the VM-level SAS migrates a VM while a selected implementation is
serving a request, there may be a case that the available resources in the
new server is below the amount of resources that is required by the
implementation.

The execution of the application takes more time and energy on the
new server.

18

TECHNISCHE
@ UNIVERSITAT
DRESDEN

Conclusion and Future work

e Suitable methodological and tool support are needed to detect and
represent emergent behavior.

e Like any other kind of behavior, we require to provide both design-time
and runtime support to detect and represent emergent behavior.

e Formal modeling can be regarded a suitable mechanism to exhaustively
comprehend the behavior of SoS.

e However, it may not scale up properly.

e To cope with emergent interference, it is necessary to break the
autonomic behavior of each constituent SAS, and provide means to
coordinate their interactions.

e Modularity of each SAS must be preserved.
e Loose coupling must be achieved in the integrations.
e Coordination protocols must also be modularized.

e We plan to adopt the concept of event-based modularization to
modularly integrate multiple constituent systems with each other.

e An event-based language is being implemented based on this concept. .

