
Detecting Emergent Interference in Integration of 
Multiple Self-Adaptive Systems

Somayeh Malakuti

Software Technology Group
Technical University of Dresden

Germany
26.08.2014

Fakultätsname XYZ Fachrichtung XYZ Institutsname XYZ, Professur XYZ



Outline

2

• Background

• Detecting Emergent Interference via Formal Verification

• Modeling execution environment

• Modeling self-adaptive systems

• Verification of self-adaptive systems

• Modeling and verifying SoS

• Conclusion and Future Work



3

Background

• Self-adaptive software systems (SAS’s) are characterized by their 
ability to adapt according to changes in their environment. 

• MAPE-K model is widely adopted to design and implement SAS’s as 
a feedback control loop.

Managed System

Knowledge 

Base

Monitor

Analyze Plan

Execution

Sensor Actuator



Background

• Within the context of the HAEC (Highly Adaptive Energy-efficient 
Computing) project, different research teams are investigating 
various kinds of SAS at different layers:

• operating systems, database management systems, application software 
and virtual machines. 

• The common goal of these SAS's is to improve the energy-utility of 
the system: 

• The system must serve the requests of users in an energy efficient way 
while fulfilling the desired utility objectives of the users.

4



Background

5

Hardware Components

CPU NIC RAM HDD

VM (1)

VM (2)

Application-level SAS

Video Transcoding 

App.

Server

VM-level SAS

Server Load

Availability of 

Resources

Select 

Implementation

Start, Stop, 

Migrate

Start, Stop, 

Migrate

Video Transcoding 

App.
Video Transcoding 

App.

Transcode (file, 

objective =Maximize(resolution))



Background

• Integrating multiple SAS's, which are developed and managed 
independently, is a novel example of SoS. 

• Is there any emergent interference as the result of such 
integration, which may negatively influence the overall energy-
utility of the system?

• Emergent behavior is an effect that is caused from the interactions 
of multiple constituent entities.

• The term “emergent” implies that it is very hard or even impossible to 
reduce the behavior to the behavior of individual constituent entities. 

• Various types and categories of emergent behavior are defined in 
literature. Examples are: 

• Expected and desirable emergent behavior

• Expected and undesirable emergent behavior

• Unexpected and desirable behavior

• Unexpected and undesirable emergent behavior

6



Detecting Emergent Interference via Formal Verification

• Due to the complexity of SAS’s, there is an inevitable need to 
provide methodological and tool support to detect emergent 
interference. 

• There are various methods to detect emergent behavior:

• Variable-based

• Event-based 

� These require a priori definition of emergent behavior

• Adopting formal modeling and model checking to detect emergent 
behavior can be regarded as a combination of the variable-based 
and event-based methods. 

• The behavior of each constituent system is modeled as an event-based 
automaton, and the states of each automaton is represented via a set of 
variables. 

• A specific global state of the system, which is automatically detected by a 
model checker, is regarded as emergent behavior.

7



Step 1: Modeling Execution Environment

8

Hardware Components

CPU NIC RAM HDD

VM (1)

VM (2)

Application-level SAS

Video Transcoding 

App.

Server

VM-level SAS

Server Load

Availability of 

Resources

Select 

Implementation

Start, Stop, 

Migrate

Start, Stop, 

Migrate

Video Transcoding 

App.
Video Transcoding 

App.



Step 1: Modeling Execution Environment (CPU)

9



Step 1: Modeling Execution Environment (NIC)

10



Step 1: Modeling Execution Environment (Server)

11



Step 2: Modeling Individual Self-adaptive Systems

12

Hardware Components

CPU NIC RAM HDD

VM (1)

VM (2)

Application-level SAS

Video Transcoding 

App.

Server

VM-level SAS

Server Load

Availability of 

Resources

Select 

Implementation

Start, Stop, 

Migrate

Start, Stop, 

Migrate

Video Transcoding 

App.
Video Transcoding 

App.



Step 2: Modeling Individual Self-adaptive Systems

13



Step 2: Modeling Individual Self-adaptive Systems

14



Step 3: Verifying Individual Self-adaptive Systems

15

• If there is a valid request from user, the request will eventually be served by 
the application.

• It will never be the case that while configuring the application with a new 
implementation, the CPU frequency and network bandwidth goes below the 
amount being used for selecting the implementation.

• It will never be the case that while serving a request, the CPU frequency and 
network bandwidth goes below the amount required for serving the request.



Step 3: Verifying Individual Self-adaptive Systems

16

• If a server is underutilized, and if a new server is found to migrate the VMs to, 
the migration will take place.



Step 4: Detecting Emergent Interference

• Defining an SoS in UPPAAL:

17

• Detecting emergent interference:

• If a property is violated, model checkers give a counter-example 
trace. This trace can be adopted as a means to understand the 
potential interference among constituent systems.



Step 4: Detecting Emergent Interference

• Emergent interference (1): 

• If the VM-level SAS migrates a VM while application-level SAS is selecting 
an implementation of the application, there may be a case that the 
available resources in the new server is below the amount of resources 
that the application-level SAS is considering for selecting the best 
implementation. 

• Emergent interference (2): 

• If the VM-level SAS migrates a VM while a selected implementation is 
serving a request, there may be a case that the available resources in the 
new server is below the amount of resources that is required by the 
implementation.

• The execution of the application takes more time and energy on the 
new server.

18



Conclusion and Future work

• Suitable methodological and tool support are needed to detect and 
represent emergent behavior.

• Like any other kind of behavior, we require to provide both design-time 
and runtime support to detect and represent emergent behavior.

• Formal modeling can be regarded a suitable mechanism to exhaustively 
comprehend the behavior of SoS.

• However, it may not scale up properly.

• To cope with emergent interference, it is necessary to break the 
autonomic behavior of each constituent SAS, and provide means to 
coordinate their interactions.

• Modularity of each SAS must be preserved.

• Loose coupling must be achieved in the integrations.

• Coordination protocols must also be modularized.

• We plan to adopt the concept of event-based modularization to 
modularly integrate multiple constituent systems with each other. 

• An event-based language is being implemented based on this concept.
19


